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Abstract

Large-scale data acquisition and analysis are often required in the
successful implementation of the design, build, test, and learn (DBTL)
cycle in biosystems design. However, it has long been hindered by
experimental cost, variability, biases, and missed insights from traditional
analysis methods. Here, we report the application of an integrated
robotic system coupled with machine learning algorithms to fully
automate the DBTL process for biosystems design. As proof of concept,
we have demonstrated its capacity by optimizing the lycopene
biosynthetic pathway. This fully-automated robotic platform,
BioAutomata, evaluates less than 1% of possible variants while
outperforming random screening by 77%. A paired predictive model and
Bayesian algorithm select experiments which are performed by Illinois
Biological Foundry for Advanced Biomanufacturing (iBioFAB).
BioAutomata excels with black-box optimization problems, where
experiments are expensive and noisy and the success of the experiment
is not dependent on extensive prior knowledge of biological mechanisms.

Introduction

Biological systems such as proteins, pathways and whole cells have been
increasingly explored for a wide variety of biotechnology applications1,2.
However, due to the complexity of biological systems and their myriad
components and many unknown interactions among them, many rounds
of design, build, test and learn (DBTL) must be performed3,4,5,6. There
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have been many efforts to expedite the DBTL cycle3 and automated
biofoundries such as Illinois Biological Foundry for Advanced
Biomanufacturing (iBioFAB)7 and Edinburgh Genome Foundry8 have been
an undeniably important leap toward automating the design, build and
test components of the cycle3. However, other than some specific and
narrow applications9,10, there is no example of automation and
integration of the learn component to close the DBTL cycle and enable
the iteration of this cycle with minimal human intervention.

Furthermore, the automation is not limited to build and test elements of
the cycle and given the large amount of data generated by modern
biofoundries, automation of the learn component is also crucial.
Assistance from computer algorithms and using statistical models and
machine learning is of special importance given the complexity of most
biological systems of practical importance and the high dimensionality of
optimization tasks required to quantify and manipulate such systems.
Biosystems ranging from single proteins to entire pathways can be
engineered using statistical models11,12, machine learning
algorithms13,14,15,16,17, reinforcement learning18 and a complete suite of
biophysical models19. However, most of the progress on automation of
the DBTL cycle has been focused on one of the elements of this cycle
where integrating all these components can result in a synergistic effect
of enabling large amount of high-dimensional data to be acquired and
analyzed by the fully automated DBTL cycle.

To overcome these limitations, we integrate the iBioFAB, a fully
automated and versatile robotic platform7 with a machine learning
algorithm. This BioAutomata platform designs experiments, executes
them and analyzes data to optimize a user-specified biological process in
an iterative manner. BioAutomata trains a probabilistic model on initially
generated (or available) data and decides the best points of the
optimization space to evaluate, i.e., the points that are more likely to
result in an improved biosystem. This results in a reduction of the total
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number of experiments needed to find the maximum of the optimization
space. This optimization framework is ideal for cases where the goal is
finding the optima of a black-box function and where data acquisition is
expensive and noisy, which is intrinsically true in biosystems design.
Bayesian optimization has also been shown to be a powerful tool in other
areas such as protein engineering15,16,20,21.

As a proof of concept, we optimize the lycopene production pathway, i.e.,
fine-tune the expression of genes involved in its biosynthesis (the inputs
to the function) to achieve the highest lycopene production (output of
the function). Lycopene has been traditionally used as food additive and
colorant but recently many reports have proposed its effects as
antioxidant, anticarcinogen and for preventing cardiovascular disease22.
Due to the high commercial value of lycopene, the lycopene biosynthetic
pathway has been a target of multiple metabolic engineering
pursuits23,24,25. While there are other strategies such as deleting or
overexpressing endogeous genes in the organism to push the flux toward
the product of the pathway, or simply optimizing the fermentation
conditions, optimizing the expression of the biosynthetic genes is often
the first choice. By combining the Bayesian optimization algorithm and
iBioFAB automation system, we evaluate <1% of all the possible tunable
expression values of component genes versus the production
(expression–production landscape) to find a strain that produces high
lycopene titer. Each point on this landscape denotes the production
amount of the desired chemical given the particular expression level of
each gene. After the initial design and setup of this BioAutomata, the role
of the researchers changes from being the drivers of the experiments to
supervisors of the system while the algorithm-driven optimization
platform designs and performs the experiments to maximize the
objective function defined by the researchers.

Results
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Fully automated algorithm-driven platform BioAutomata

In biosystems design, it is typically expensive, time consuming and error-
prone to perform wet-lab experiments. Therefore, optimizing a biological
system is most efficient when the number of experiments performed is
minimized. Our proposed approach to achieve this is shown in Fig. 1.
Within this context, the first step in optimization is to determine the initial
design, inputs and outputs of the system as well as the objective
function. After the initial setup, a predictive model and acquisition policy
should be chosen to estimate the landscape given the currently available
data and choose the next points to be evaluated and experiments to be
performed. After all the elements of the system (initial design, acquisition
policy, experimental setup, data acquisition and predictive model) are
chosen, the BioAutomata can commence the optimization. First, the
acquisition policy chooses the points to be evaluated. Next, iBioFAB
performs the experiments that evaluate the selected points for their
fitness and returns the data to the predictive model. The model will then
update its belief about the landscape based on the newly presented data.
Last, the acquisition policy will choose the points to be evaluated next
with the guidance of the updated predictive model.

Fig. 1
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The overall workflow of BioAutomata. After setting the initial parameters, designing the
sequence space of variable regions (such as promoter variants in a combinatorial pathway
assembly), and defining the objective function, BioAutomata selects which experiments
are expected to result in the highest improvement of yield, performs those experiments,
generates data and learns from it, updating its predictive model given the newly presented
evidence. It will then decide on the next experiments to perform to reach the goal set by the
user while trying to minimize the number of experiments and the cost of the project

Full size image

Determination of the predictive model and acquisition
policy

Since the objective is to find the maximum of a black-box function where
data acquisition is expensive and noisy, we sought to use Bayesian
optimization26, which is ideal for solving such problems. Bayesian

https://www.nature.com/articles/s41467-019-13189-z/figures/1
https://www.nature.com/articles/s41467-019-13189-z%23ref-CR26


11/18/19, 9:14 AMTowards a fully automated algorithm driven platform for biosystems design | Nature Communications

Page 6 of 51https://www.nature.com/articles/s41467-019-13189-z

optimization27,28,29 is a powerful method that has been shown to
outperform many algorithms30 in optimizing such challenging
functions31. In short, it constructs a probabilistic model and uses this
model to make decisions on where to evaluate next to maximize the
expected progress made with each function evaluation and therefore
reduce the number of evaluations, i.e., experiments required to find the
maximum. The algorithm takes the expected outcome of each evaluation
as well as the confidence on this expected outcome into account. To use
this algorithm, two main functions must be chosen, a probabilistic model
to make assumptions about the landscape given the available data and
an acquisition policy to suggest which point to evaluate next to maximize
the expected progress toward the optimum.

We used the Gaussian process (GP) as the predictive model to assign an
expected value and confidence level to all the unevaluated points. The
GP was chosen due to its flexibility and broad applications15,30,32. GP
assigns a mean and variance to each point in the landscape and as more
points are evaluated, the mean and variance are updated accordingly
(Supplementary Fig. 1).

The acquisition function drives the experimental direction to make the
most expected progress toward the optimum. Given the expected value
and confidence on that value, we are faced with a trade-off between
exploration and exploitation. If the only tested points are those with the
largest expected values, we risk only finding local maxima. Hence, we
want to explore more (focus on points where the model is
uncertain about). However, if we only evaluate points where we have little
confidence on the expected value, although we learn more about the
landscape, in most cases these expensive experiments are wasted on
increasing the confidence level on low-performing regions rather than
focusing on finding the maximum. Hence, if we find a good point, we
want to exploit that finding to search nearby for a better solution (with
greater expectation).
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Several algorithms are suggested for balancing the trade-off between
exploration and exploitation and the maximum of acquisition function
represents an automatic trade-off between these two factors. One of the
commonly used acquisition functions is Expected Improvement (EI)26,29

where the algorithm estimates how much improvement over the current
best is expected from each one of the points, and samples the point with
the highest expected improvement. This function elegantly finds the
balance in exploration and exploitation trade-off by using the already
trained GP and finds the point that provides the highest expected
improvement and was chosen as the acquisition function in this work.

As described before, by design, Bayesian optimization relies on
sequential experiments. Each time one point is evaluated, the result is
given to the algorithm to update the prior GP and find the next point to be
evaluated using the acquisition function. However, it is more efficient to
perform some experiments in parallel and in sequential batches so as to
reduce the number of rounds of the experiment and consequently the
time of the entire project. Fortunately, a variation of Bayesian optimization
has been recently developed for multi-core parallel processing
applications. This algorithm can handle multiple pending evaluations and
can get the result of any of the pending evaluations at any given time and
return the next point to be evaluated26. In short, the algorithm considers
likely outcomes for each of the pending points and calculates the
acquisition functions based on the all possible outcomes. This method
was used to drive the direction of our experiments and one batch of
points was chosen and evaluated in each round and the result was given
to the algorithm to generate the next batch of points to be evaluated. It is
noteworthy that in the experimental setting and when the evaluations are
done using parallel experimentation, the pending points are updated at
the same time in subsequent batches and not one by one.

If there was no error in the experiments, which is the case for evaluation
of mathematical functions, the confidence level around the points that
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are already evaluated would be very high. However, since the result of all
experiments contain some error and is far from perfect mathematical
calculations, the confidence in the results was adjusted so the program
expects an error in the evaluations and adjusts the mean and variance for
all the points accordingly. The other aspects of this optimization
algorithm including the covariance functions and hyperparameters of the
GP are explained in details by Sneok and coworkers26.

Evaluation of the Bayesian optimization algorithm

To illustrate Bayesian optimization with GP, we defined a single variable
function and tried to find the maximum value by sequential sampling
(Fig. 2). The function was deliberately chosen to have multiple peaks and
local optima (dashed curve in Fig. 2) to test whether the optimization
algorithm can indeed find the global maximum. The algorithm was able to
find the maximum and the exploration and exploitation trade-off is
illustrated by the sampling order depicted in the figure. The more points
evaluated by the algorithm, the closer the algorithm became to the
maximum as shown in Fig. 2b.

Fig. 2
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Testing Bayesian optimization by finding the maximum of a two-dimensional function. a The
acquisition function decides the next input to test and the output is used to refine the
predictive model. Iterations 5, 10, 15 and 20 of this process are shown. b With increasing
rounds of iteration, the predictive model grows more confident of the location of the global
maximum and the distance between tested inputs decreases with each iteration. c The
algorithm evaluated 9 points before finding the location of the maximum. Subsequent iterations
tuned this approximation toward the true optimum. The algorithm evaluated 12 points before
finding the maximum. The order in which each point is evaluated is shown on the graph

Full size image

We next sought to illustrate the optimization method with a similar 3-
variable function with three inputs and one output to simulate a similar
multi-dimensional optimization problem. It is noteworthy that Bayesian
optimization has been used in numerous applications33,34,35,36,37 and the
purpose of this simulation is testing the algorithm on a simple but similar
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setting. The search perimeter was set to be 1–24 for each of the inputs
and the maximum of the function was set to be 9 (y = f(x1, x2, x3) | xi ɛ {1,
2,…, 24}, fmax = 9). The Bayesian optimization algorithm was able to find
the maximum value of this function by only evaluating 12 points out of all
possible 243 = 13,824 points. These 12 evaluations were the result of 12
iterations of learning and testing, with each evaluation being followed by
a learn step that produced the next point to evaluate. We then sought to
compare this optimization strategy with baseline approach where
randomly sampled points are evaluated and all of these points are used
to train an Exterior Derivative Estimation (EDE)-based regression model
described in previous publications14,38. We found that although the EDE
approach shows impressive predictive capability, especially given that all
the data have been acquired at once and not through iterative sampling,
even after sampling 192 random points, the maximum could not be found
(Supplementary Table 1).

We then tested the Bayesian optimization method by running multiple
simulations with different conditions. First, to see if the algorithm can find
the maximum of other functions than the one tested in the previous
section, we generated 100 random Gaussian mixture models and found
the maximum for all of them using this algorithm. On average, it took the
algorithm 9.82 and 7.93 evaluations to find the maximum and 95% of the
maximum, respectively. To test the effect of error on the algorithm, we
randomly picked one of these 100 Gaussian mixture models and
attempted to find the maximum while adding 0%, 10% and 20% error
rate, the upper bound of most analytical methods, to the output value of
the function evaluation to better simulate the real experimental setup. We
observed that the algorithm is still able to find the maximum of the
function in most runs, but the number of evaluations in each run was
significantly increased and in the case with 20% error, it could not find
the maximum for 18% of the cases even after 400 evaluations. However,
the algorithm could find 95% of the maximum in all cases (Table 1). This
shows that, as expected, error makes the optimization more difficult, but
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Bayesian optimization algorithm can adjust for it and still find the
maximum for most cases. It is noteworthy that finding the maximum gets
increasingly difficult with higher error rate. Other than the fact that low-
quality data, as expected, reduce the predictive power of the model, with
higher error rate, the difference between points closest to the maximum
becomes indistinguishable.

Table 1 Effect of error on the optimization

Full size table

Lastly, we set to optimize the number of points evaluated in each round,
with a trade-off between the experimental cost and time: as the size of
each batch increases, the cost of experiment increases as well, however,
the number of total rounds of experiment, hence the time spent on the
entire project decreases. The batch sizes are also constrained by
experimental conditions especially given the standard 96-well format for
high-throughput biological experiments. A few batch sizes were
simulated on the test model described above while including 10% error. It
was found that batch sizes larger than 46 did not significantly decrease
the number of rounds in the given 4-D optimization scheme
(Supplementary Table 2) and 46 was chosen as the batch size for
pathway optimization experiments in this work.

Automated optimization of the lycopene biosynthetic
pathway

After finalizing the predictive model and acquisition policy, we chose
optimization of the lycopene biosynthetic pathway as a model system.
One of the reasons for the low productivity and yield of a biosynthetic
pathway is flux imbalance39,40,41 where suboptimal reactions rates result
in accumulation or depletion of the intermediates molecules in the
reaction. This is especially important in pathways with multiple reactions
where the intricate balance of each step of the pathway can be difficult to
find. Fine-tuning the flux of each step in a pathway and its optimization
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has been shown to be a very effective strategy for increasing the total
flux in a variety of different cases42,43,44,45. The abstraction of this
problem can be represented by an expression–production landscape
where the maximum flux is achieved by a certain expression level of each
of the genes in the pathway. We should then design an experimental
setup where we can tune the expression of the genes in the pathway
(inputs of the function) and define the output that we want to maximize.
We should then try different expression levels as inputs and get lycopene
production as output and find the input that corresponds to the highest
output.

To perform the expression tuning for pathway optimization and
generating the inputs, a set of regulatory elements must be developed to
control the expression level of the enzymes in the pathway of interest.
Relying on previously published work, we mutated a region in T7
promoter that has been attributed to its strength46,47 to construct 12
promoters with distinct expression levels. We then designed and tested
two Ribosome Binding Sites (RBS) using the RBS library calculator40,45

with vastly different strengths. The resulting T7p-RBS combination
resulted in 24 distinct expression levels (Supplementary Fig. 2) with
~1000-fold dynamic range. To investigate  whether the expression level
trend measured using eGFP translates to the trend with the crtE, crtB,
and crtI genes downstream of the RBS, these genes were fused to eGFP
and for each of the genes, four promoter/RBS combinations from four
distinct combinations of weak/strong promoter/RBS, each randomly
picked from one quartile or expression level strength, were compared and
the same general expression trend was observed (Supplementary Fig. 3).

The pathway optimization workflow was implemented using iBioFAB7

which has been used for high-throughput TALEN synthesis48 and
automated yeast genome engineering49. By harnessing the power of
iBioFAB as well as Bayesian optimization, all aspects of the DBTL cycle
were automated. In each round, the Bayesian optimization algorithm
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chose 46 points to be evaluated (the number being chosen based on
tests reported above) and gave them to the iBioFAB scheduling software.
As a control and accounting for any variations between different batches,
one of the chosen points was always the middle point (12, 12, 12). The
software then pipetted the correct parts to be assembled from the parts
library and assembled the plasmids using Golden Gate assembly. The
lycopene production for the points was then measured in four biological
replicates and the mean values of the results were given back to the
algorithm to calculate the next points to be evaluated. The Bayesian
optimization algorithm starts by uniformly exploring the entire landscape
(Fig. 3a) and gets less uniform in the later rounds (Fig. 3b, c) where more
information is available about the landscape, prompting exploration of
specific regions. In round 2, there is still some exploration while the
points in the third round have almost converged to one specific region
which is believed to yield the highest lycopene production.

Fig. 3

Change in sampling behavior of Baysesian optimization of the lycopene production pathway. In
the first round (a), all points were chosen to uniformally explore the landscape since it is
completely unexplored and unknown (n = 46). In the second round (b), some information is
acquired and the points picked by the algorithm are clearly skewed from the unifrom
distribution (n = 45). However, since there is some uncertainty, it is still exploring the
landscape. Finally, in the third round (c), a clear pattern is observed where the algorithm has
determined the points in a particular area are more likely to be closer to the global optima and
is actively exploring that area but still doing some minimal exploration (n = 45). Source data are
provided as a Source Data file

Full size image

The distributions of lycopene production among points evaluated in each
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round are compared to each other in Fig. 4, and it is observed that the
later rounds of pathway optimization have higher average lycopene
production and higher maximum production which shows the
effectiveness of the Bayesian optimization algorithm in finding better
points (i.e., mutants) in each subsequent round. To better compare the
Bayesian optimization algorithm with traditional random library screening,
a random library was constructed and 46 (same number as the number
of points in each round) and 136 (same number as the number of points
in all three rounds) points were randomly picked and lycopene production
was measured, and the production distributions of these two collections
are also shown in Fig. 4. The average and maximum of lycopene titer
found by random screening are 1.43 and 1.93 times less than those found
from the third round of pathway optimization. Even by evaluating 136
random points, the maximum of lycopene titer found was 1.77 times lower
than the maximum from the third round.

Fig. 4

https://www.nature.com/articles/s41467-019-13189-z%23Fig4
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Lycopene production in different rounds of pathway optimization and random screening. The
average and maximum points have increased after each round of pathway optimization.
Moreover, although the average and maximum of evaluating 46 and 136 random points are a
little more than the uniform distribution in round 1, they are significantly lower than the points
picked by the algorithm in the subsequent rounds. The boxes of the plots contain data within
the interquartile range (IQR), while whiskers spread from the boxes to 1.5 times IQR. The center
line in the boxes is the median of the data and points above the whiskers are values which are
higher than 1.5 times IQR above the third quartile. n = 46, 45, 45, 46 and 136 for each plot,
respectively. Source data are provided as a Source Data file

Full size image

To better compare random sampling with Bayesian optimization and to
more reliably represent the maximum found by random sampling, a
distribution model was constructed based on the 136 randomly tested
points. First, the average and standard deviation for the experimental
data were calculated and used to generate a normal distribution. A total
of 136 points were randomly selected from this distribution and the
maximum was recorded. This was repeated 1000 times and the
distribution among maxima is shown in Supplementary Fig. 4. The
average and standard deviation of the 1000 maxima dataset was found to
be 4.81 and 0.43, respectively, therefore the expected outcome of the
best mutant from 136-point random sampling is 4.81 ± 0.43. This
simulation is far from perfect because a normal distribution is not
necessarily the best representation of the landscape, and because
metabolic burden may have reduced the average production amount of
randomly selected mutants. Nevertheless, it provides a useful baseline
for comparison. The maximum of the 136 points tested in our experiment
was 5.12, within the expected outcome calculated. This range is well
below 9.07, the best mutant found using the Bayesian optimization
method.

The best lycopene producers of each round were also isolated and
characterized in test tubes, and lycopene production was quantified
using the traditional acetone extraction method50. The pathway with the
medium-level expression for all genes was also chosen as the control,

https://www.nature.com/articles/s41467-019-13189-z/figures/4
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and the lycopene production levels for all these four samples were
analyzed in one batch with four biological replicates and compared to the
control (Supplementary Fig. 5). It was observed that the best
combination in each round has increased significantly and the best
overall lycopene producing strain is eight times better than the control.

Discussion

In this work, we presented a fully automated algorithm-driven
optimization platform for biosystems design where the machine performs
all the steps in the optimization process. iBioFAB was integrated with the
machine learning algorithm where after the initial design and setup, the
algorithm decides what experiments to perform, the robot performs the
experiments and returns the data to the algorithm and it will then decide
the next point to be evaluated. Machine learning enables exploration of
large dimensional optimization problems whereas our intuition is mostly
limited to three dimensions. Particularly, machine learning enables faster
and more targeted optimization by only focusing on areas of high interest
and uncertainty, deals with the experimental data by keeping the
uncertainty of experiments into account and actively tries to reduce the
number of experiments and the cost. BioAutomata is less biased, can
process high-dimensional data, makes fewer mistakes and can find the
optimum with very few evaluations.

To demonstrate one of BioAutomata’s applications and as a proof of
concept, we set to optimize the flux of the lycopene biosynthetic
pathway. We were able to tune the gene expression of this 3-gene
pathway to find the optimum expression for the most lycopene
production by evaluating <1% of all 13,824 possibilities. We also
compared this optimization scheme with another previously reported
regression model as well as random sampling and found it to be superior
to both in performance. The best mutant found using the BioAutomata
produced 1.77-fold higher lycopene titer than the best mutant found
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using random sampling and simulation showed that the number of
evaluations was at least eight times less than the regression-based
optimization scheme. The optimization performed here was focused on
the intrinsic parameters of the pathway. Through optimization of extrinsic
parameters, such as flux control by deleting genes that draw from the
pathway or overexpressing genes that feed into the pathway, engineering
of the central metabolism, strain optimization or fermentation
optimization, higher titers of lycopene expression have been reported in
the literature23.

The lycopene biosynthetic pathway was specifically chosen in this
experiment due to its straightforward methods of extraction and
quantification that facilitated high-throughput execution using the
automated biofoundry at the time. Potential challenges of a universal
application of BioAutomata for pathway optimization include extraction
methods that are difficult to perform on an automated platform, or
analytical/quantification methods that require equipment more complex
than a plate reader, such as Gas Chromatography-Mass
Spectrometry (GC-MS) or Liquid Chromatography-Mass Spectrometry
(LC-MS) instruments. These challenges can be overcome, but a larger-
scale and sophisticated biofoundry must be constructed to integrate
these instruments. It is also noteworthy that the promoter
characterization in this work was performed with a green fluorescent
protein (GFP) gene and not the lycopene biosynthetic genes, and
although this assay is a widely used method for promoter/RBS
characterization14,44,45,47,51, we did not measure the protein expression
level of the crtE, crtB and crtI genes in the lycopene biosynthetic
pathway which would have resulted in a more accurate mapping of the
promoter/RBS sequence and expression level.

Although the algorithm is especially powerful when used in combination
with a fully automated system like iBioFAB, it can be easily adopted for
use in semi-automated or manual settings where reducing the number of
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evaluations is even more important due to the higher experimental cost.
Moreover, other models and optimization algorithms are available and GP
was chosen mainly due to its successful implementation in biological
systems15,16. An area of possible improvement is the initial guess of the
landscape for optimization. Here, we did not make any initial assumptions
about the landscape, however, using the trained model for one system as
the starting point for a similar system has been shown to be a powerful
method and this educated guess can potentially result in reducing the
number of evaluations to find the maximum52. For instance, the trained
posterior on a 3-gene pathway can be used as the starting point for
optimizing the same pathway with additional genes to optimize.

This approach and the BioAutomata can be used for other black-box
optimization problems where the evaluations are noisy and expensive and
are not limited to pathway optimization. One conceivable example can be
protein engineering where different changes to the protein sequence can
be made using approaches described by Romero and co-workers15,16 or
using CRISPR-based in vivo point mutation and modification tools53 and
the optimal change is found using a similar approach. This optimization
workflow can also be used in other areas from buffer and media
optimization to genome engineering in search for desired phenotypes.
Given the highly efficient nature of a 4-piece Golden Gate assembly, it
was assumed that all the reactions worked, which may not be a valid
assumption in more complex assemblies or optimization systems and an
in-line quality control step and an outlier detection method should be
added for such complex and error prone systems. We also assumed a
uniform noise model in our Bayesian optimization approach for the sake
of simplicity. Although this noise model does not match the model used
in typical GP regression, we demonstrated that this GP-based Bayesian
optimization method was able to operate effectively even with some
modest model mismatch. Future applications where variability of
measurement noise across experiments is anticipated to be a major
concern may find it useful to use heteroskedastic noise models54.
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The prospect of autonomous algorithm-driven robotic systems for
engineering biology has many promises and challenges. On one hand,
human supervision is crucial to maintain ethical issues surrounding the
autonomous engineering of life and keeping a check on the extent of
what the machine does and achieves. On the other hand, an autonomous
algorithm-driven robotic system, which is connected to the web of
knowledge, can learn from the published information in real-time and
publish the results of its experiments in real-time as well. Other than the
obvious advantages of reducing the cost and increasing the accuracy of
research, the connected web of BioAutomata can significantly reduce the
time from performing experiments to publishing the data and using it by
others. BioAutomata will greatly benefit from standardization of data and
following standards set by databases like Braunschweig Enzyme
Database (BRENDA), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Protein Data Bank (PDB) and Synthetic Biology Open Language
(SBOL)55,56,57.

Methods

Strains cultivation

DH5α and BL21(DE3) Escherichia coli (New England Biolabs, Ipswich,
MA) cells were used for making chemically competent cells using Mix &
Go E. coli Transformation Kit (Zymo Research, Irvine, CA) for plasmid
amplification and lycopene production, respectively. E. coli cells were
grown in Luria Broth (LB) medium (Fisher Scientific, Pittsburgh, PA)
supplemented with 50 µg/mL spectinomycin (Spec) or 25 µg/mL
kanamycin (Kan) to maintain the plasmid or 0.5 mM isopropyl-β-d-
thiogalactoside (IPTG) for induction as appropriate. Antibiotics and IPTG
were purchased from Gold Biotechnology (St. Louis, MO). DH5α E. coli
cells and BL21(DE3) starter cell cultures were grown at 37 °C, but
BL21(DE3) cell cultures for lycopene production were grown at 28 °C, the
optimum growth temperature for lycopene production22,58. The dry cell
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weight (DCW) was calculated from the OD600 using dcw/OD of 0.36 as
the conversion rate59.

DNA manipulation and plasmid construction

To generate the T7 promoter (T7p) variants with different expression
levels, the region attributed to its strength46 was mutated by using T7p-
mut-3N and T7p-mut-6N primers when amplifying eGFP gene with T7
terminator (T7t) primers. The resulting T7p-mut-eGFP-T7t DNA fragment
was cloned into the pET26 (b) backbone using restriction digestion
ligation. The resulting library was then transformed into BL21(DE3)
competent cells and 192 colonies were randomly picked and grown
overnight at 37 °C. The next day, 900 µL of LB + Kan was inoculated with
10 µL of the seed culture and was incubated at 37 °C and 250 rpm. After
3 h, 100 µL of LB + Kan with 5 mM IPTG was added to the cell culture and
it was incubated at 28 °C. After 4 h, eGFP fluorescence (488 nm
excitation/509 nm emission), as well as OD600, were measured and 24
different promoters were chosen for further characterization. Two RBS
sequences were designed using RBS library calculator45 for translation
regulation and were combined with the identified promoters to evaluate
their strength. These promoters were then used to clone the T7-mut-
RBS-eGFP-T7t expression cassette. Twelve of these promoters that
exhibited a wide range of strengths were chosen as a promoter library for
transcription regulation. To test the expression level of the lycopene
genes, the crtE, crtB and crtI genes were PCR amplified and fused to
eGFP gene and different promoter/RBS combinations using Gibson
Assembly. Fusion expression of crt genes and eGFP was performed with
a flexible linker (GGATCCGCTGGCTCCGCTGCTGGTTCTGGCGAATTC)
that was optimized for GFP fusion expression in E. coli60. The
T7_mut_RBS(weak/strong)_Crt(E/B/I)_eGFP expression cassettes were
then expressed in four biological replicates following the same protocol
as above and the fluorescence was measured.
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QIAGEN Plasmid Mini Kit (QIAGEN, Valencia, CA) was used to isolate
plasmids from E. coli cells and Zymoclean Gel DNA Recovery Kit (Zymo
Research, Irvine, CA) was used for gel purification. All restriction
enzymes, Q5 polymerase, Gibson Assembly master mix components and
the E. coli shuttle vectors were purchased from New England Biolabs
(Ipswich, MA) and all chemicals were purchased from Sigma-Aldrich (St.
Louis, MO) unless otherwise specified. All the primers and plasmids used
in this study are listed in Supplementary Data 1 and  2, respectively. The
GenBank files with the annotated map of DNA parts as well as the final
constructs are included in the Supplementary Information. The strains
and plasmids are available through the standard material transfer
agreement from the University of Illinois.

Golden Gate assembly

Golden Gate assembly method was used to assemble the lycopene
pathway with different expression level of each gene. First, the pSPE
plasmid was digested with AFIII and XbaI restriction enzymes. After
digestion, two complementary oligos containing optimized Golden Gate
overhangs48,61, as well as a T7 promoter, terminator and EcoRV
recognition site were annealed, phosphorylated and cloned between the
cut sites. Phosphorylation was performed using T4 Polynucleotide Kinase
(New England Biolabs, Ipswich, MA), following manufacturer’s
instructions. The plasmid was then amplified, digested with EcoRV and
each of the crtE, crtB and crtI genes with different RBS/T7 promoter
strengths were cloned using Gibson assembly method62 with T7
promoter and terminator as the homology arms by commercial NEBuilder
HiFi DNA Assembly Cloning Kit (New England BioLabs, Ipswich, MA) as
shown in Supplementary Data 15–18. To create the insert for cloning in
the helper plasmids, RBS was added to each of the crtE, crtB and crtI
genes using PCR amplification and T7 promoter was added in another
step of PCR reaction. The 72 assembled plasmids were then amplified in
E. coli and the inserts were confirmed by PCR amplification. The pET26b
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plasmid was obtained from EMD Millipore (Billerica, MA) and used as the
receiver for the lycopene biosynthetic pathway. The Golden Gate linkers
as well as the BsaI sites were placed on two complementary
oligonucleotides resulting a short DNA fragment with sticky end after
annealing and phosporylation. pET26b plasmid was digested with XhoI
and SphI restriction enzymes and ligated to the DNA fragment containing
overhangs to construct the backbone for the lycopene production
pathway.

The 73 assembled parts (72 inserts and 1 backbone) were amplified in E.
coli and purified. The concentration of the backbone was set to 30 ng/µL
and the concentration of the rest of the parts was adjusted to the same
molar concentration. Each 20 µL Golden Gate reaction consists of 100 ng
of the backbone, equimolar amounts of crtE, crtB and crtI, 10 units of
BsaI restriction enzyme, 100 units of T4 DNA ligase, 2 µL of CutSmart
buffer and 0.75 µL of adenosine triphosphate (ATP) (25 mM). After the
Golden Gate reaction, 5 µL of nuclease master mix consisting of 2.5 units
of BsaI, 2.5 units of plasmid safe nuclease (Illumina, San Diego, CA), 0.5 
µL of CutSmart buffer and 1 µL of ATP (25 mM)) was added to the
reaction to linearize any undigested backbone and digest all the linear
parts from the mixture. The above Golden Gate and plasmid safe master
mix protocol have been adopted from our previous work48 with some
modifications but the thermocycling protocol has remained unchanged.
To ensure high-efficiency assemblies, optimized Golden Gate linkers for
this experiment were chosen from a highly efficient set of linkers63. To
test the efficiency and fidelity of Golden Gate assembly, 24 reactions
using each of the 72 parts at least once were performed and four
colonies from transformants of each reaction were selected and all the
assemblies were confirmed to be correct. A sample of these assembly
products is shown in Supplementary Data 15.

Lycopene extraction and quantification
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Lycopene can be extracted by organic solvents and quantified
calorimetrically by measuring the absorbance at around 470 nm64. This
assay is highly sensitive and has been reported to quantify the lycopene
amount with sub-milligram accuracy65,66. The most common lycopene
extraction and quantification method involves resuspension of the cells in
acetone followed by incubation in acetone50,67,68. Since acetone is
extremely volatile and dissolves the glue seals and some of the other
consumables, it is not ideal for use in the automation system. Therefore,
four other organic solvents, some of them were reported in previous
publications22,69, were tested for efficacy in lycopene extraction. The
most effective extraction solvent that is compatible with high-throughput
systems was found to be dimethyl sulfoxide (DMSO). E. coli cells were
spun down and the supernatant was removed. The cells were then
resuspended in 300 µL of DMSO and were incubated for 30 min at 37 °C
at 250 rpm. After the incubation, the cell–DMSO mixture was spun down
at 3000 rpm for 10 min and 200 µL of the supernatant was removed and
the absorbance at 472 nm was measured and correlated to lycopene
production.

Full automation of workflow

iBioFAB7 was used to automate the assembly of DNA parts for the
lycopene pathway, transformation, cell cultivation and lycopene
extraction. The overall workflow of the experiments is shown in Fig. 5.
First, the parts to be assembled are generated by the machine learning
algorithm and given to the previously described48 script generator to
generate the pipetting routs for the Tecan liquid handler. The DNA
mixture plates were then spun down, mixed with Golden Gate master mix
and moved to thermocycler for the Golden Gate reaction. After 30 cycles
of digestion and ligation in Golden Gate assembly, Plasmid Safe master
mix was added to the mix followed by 30 min of digestion with BsaI and
plasmid safe nuclease. The plasmid-safe-treated Golden Gate assembly
product was then transformed in BL21(DE3) E. coli competent cells and
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plated on LB agar plates and moved off the deck for incubation. The
plates were incubated at 37 °C overnight and four single colonies were
picked from each of the plates using Pickolo colony-picker (SciRobotics,
Israel) and inoculated in 1 mL of LB + Kan media. The seed culture was
grown overnight and 50 µL of the culture was added to 800 µL of fresh
LB + Kan media and incubated at 37 °C. After 2 h, 200 µL of LB + Kan + 
2.5 mM IPTG was added to the culture and the induced cells were
incubated at 28 °C for 24 h for maximal production22. OD600 was
measured and the cells were then pelleted and resuspended in DMSO
and incubated at 37 °C for 30 min for lycopene quantification. To
minimize the possible variations between the different round of
optimization, the point with the median expression level of all three genes
(12, 12, 12) was repeated in the second and third rounds of optimization.
Two other controls for OD (no inoculation and growth) and lycopene
production (empty plasmid) in four replicates were included in all three
rounds. Therefore, the total number of new points in the first, second and
third rounds were 46, 45 and 45, respectively, and each round consisted
of two full 96-well plates. To test the efficiency of the assembly, 24 of the
assembled combinations were picked at random and were verified with
restriction enzyme digestion and all 24 proved to be correct as shown in
Supplementary Fig. 6. Three of these 24 plasmids were also sequenced,
and the result matched the expected sequence (Supplementary
Data 3–14).

Fig. 5
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The overall fully automated pathway optimization workflow. The machine learning algorithm
picks the plasmids to be assembled and returns the list to iBioFAB to perform the assembly.
The assembled products are then transformed, and four single colonies are isolated for
lycopene quantification and OD measurement. The resulting data are then given to the machine
learning algorithm to pick the next set of points to be evaluated

Full size image

Reporting Summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper
and its Supplementary Information files. A reporting summary for this
article is available as a Supplementary Information file. The datasets
generated and analyzed during the current study are available from the
corresponding author upon request. The source data underlying Figs. 3
and 4, Supplementary Figs. 2–5, Table 1, as well as Supplementary
Tables 1 and 2 are provided as a Source Data file.
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The source code for Bayesian Optimization was obtained from
https://github.com/JasperSnoek/spearmint. The code for Exterior
Derivative Estimation was obtained from Aswani and coworkers38. The
pipetting worklist was generated using the program previously described
by Chao and coworkers48, while the code for running the iBioFAB
platform was compiled on the iScheduler scheduling software48. All the
abovementioned codes and the codes interacting with the Spearmint
library are included in the Github:
https://github.com/hamedir2/BayesianOptimization. All these pieces of
code are provided under the MIT License.
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